Similarity-Based Context-Aware Recommendation
نویسندگان
چکیده
Context-aware recommender systems (CARS) take context into consideration when modeling user preferences. There are two general ways to integrate context with recommendation: contextual filtering and contextual modeling. Currently, the most effective context-aware recommendation algorithms are based on a contextual modeling approach that estimate deviations in ratings across different contexts. In this paper, we propose context similarity as an alternative contextual modeling approach and examine different ways to represent context similarity and incorporate it into recommendation. More specifically, we show how context similarity can be integrated into the sparse linear method and matrix factorization algorithms. Our experimental results demonstrate that learning context similarity is a more effective approach to contextaware recommendation than modeling contextual rating deviations.
منابع مشابه
Integrating Context Similarity with Sparse Linear Recommendation Model
Context-aware recommender systems extend traditional recommender systems by adapting their output to users’ specific contextual situations. Most of the existing approaches to context-aware recommendation involve directly incorporating context into standard recommendation algorithms (e.g., collaborative filtering, matrix factorization). In this paper, we highlight the importance of context simil...
متن کاملسیستم پیشنهاد دهنده زمینهآگاه برای انتخاب گوشی تلفن همراه با ترکیب روشهای تصمیمگیری جبرانی و غیرجبرانی
Recommender systems suggest proper items to customers based on their preferences and needs. Needed time to search is reduced and the quality of customer’s choice is increased using recommender systems. The context information like time, location and user behaviors can enhance the quality of recommendations and customer satisfication in such systems. In this paper a context aware recommender sys...
متن کاملCoupled Collaborative Filtering for Context-aware Recommendation
Context-aware features have been widely recognized as important factors in recommender systems. However, as a major technique in recommender systems, traditional Collaborative Filtering (CF) does not provide a straightforward way of integrating the context-aware information into personal recommendation. We propose a Coupled Collaborative Filtering (CCF) model to measure the contextual informati...
متن کاملCombining User Contexts and User Opinions for Restaurant Recommendation in Mobile Environment
In a mobile setting, user preferences vary in different contexts. Advances in mobile technologies have made the collection of user context information feasible, and as a result, the context-aware mobile recommender system field has been formed. Although there exist several different approaches to incorporating context into the recommendation process, context-aware recommendations are still diff...
متن کاملDesign and implementation of a WEBGIS-based recommendation system based on context-awareness for tourism planning
Today, tourism is one of the most lucrative industries in the world. Due to the large amount of information that exists about the points of Interest (POI) of a city, the tourist is faced with an overload of information. As a result, a recommending system is needed to recommend suitable tourist places to the tourist in the shortest time. In order to offer a better offer, the interests and contex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015